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It is proposed that the difficulties encountered with the meaning of subcritical crack 
growth arose from a misunderstanding of the Griffith equation. This equation is 
G = 27 for an equilibrium crack (stable or unstable) where 7 is the intrinsic surface 
energy. When G > 27 the crack has a velocity v depending on the crack extension 
force G - 27 , even in a vacuum, and the following equation, well verified for 
adherence of elastomers, 

G -  27 = 27~T(V) 

where q5 r (v) is related to viscoelastic losses or internal friction at the crack tip, is 
generalized to other materials. At a critical speed Vc, d(o/dv becomes negative; as a 
negative branch cannot be observed the velocity jumps to high values on a second 
positive branch, so that G = Go is a criterion for crack speed discontinuity, not the 
Griffith criterion. The multiplicative factor 27 on the right-hand side accounts for the 
shift of the v-K curves with environment. No stress corrosion is needed to explain 
subcritical crack growth. Subcritical crack growth in glasses and ceramics and 
velocity jump in brittle polymers are shown to agree with this proposal. This model 
can also explain stick-slip motion when a mean velocity is imposed in the negative 
branch. Occurrence of velocity jump or stick-slip depends on the geometry tested 
and the stiffness of the apparatus. A second kind of stick-slip associated with 
cavitation in liquid-filled cracks is discussed. When the surrounding medium can 
reach the crack tip and reduce the surface energy, even at the critical speed Vc, the 
critical strain energy release rate Gc is reduced in the same proportion as 7, and a 
loading which would have given subcritical growth will give a catastrophic failure. 
Reduction of surface energy in the Rehbinder effect and in embrittlement by 
segregation is discussed. Finally, the evolution of ideas concerning the 
Irwin-Orowan formula and fracture toughness is examined. 

1. I n t r o d u c t i o n  
Adherence of  solids, mechanics of  contact and 
fracture mechanics are three facets of  the same 
object [l], and progress in one field can 
enlighten the others. This papers has its origin in 
the work of Maugis and  Barquins on the 
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adhesive contact of  axisymmetric punches on 
rubbers [2-5]. Following the work of Johnson, 
Kendall and Roberts (JKR) [6] on the contact of  
elastic solids with surface energy, it was soon 
recognized that the calculation of radius of  con- 
tact was that of  Griffith's criterion, the edge of 
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the contact area being viewed as a crack 
propagating at the interface. Maugis and 
Barquins studied such equilibrium cracks, crack 
healing and the kinetics of crack propagation at 
fixed load, fixed grips and fixed cross-head 
velocity. They proposed an equation for kinetics 
of crack propagation, taking into account the 
effect of environment, and Maugis [7] discussed 
the meaning of  Gc and Kc for such viscoelastic 
solids. This paper is a tentative attempt to 
generalize this view to other solids such as 
glasses, ceramics, brittle polymers and metals. 

2. The Gri f f i th  cri ter ion 
Let us consider the system made of  two elastic 
solids in contact over an area A. This system can 
exchange work and heat, but not matter, with 
the exterior. A force P (compressive or tensile) 
can be applied on the two elastic bodies, either 
by a dead load as in Fig. l a, or by a spring of  
stiffness k m as in Fig. lb. The area of  contact is 
allowed to vary at fixed load P, or at fixed 
displacement for k m infinite (or more generally at 
fixed displacement A), so that the state of  the 
system depends in general on two independent 
variables P, A or 6, A. The edge of the contact 
area can be considered as an interface crack tip 
in Mode I that recedes or advances as the area of  
contact increases or decreases. We will neglect 
any interfacial shear stress so that the system is 
the same as for a notched solid, but with an 
imposed crack path. 

The energy of the system U = U(S, 6, A) is a 
function of  the extensive variables S (entropy), 
6, A; it can be decomposed into elastic energy UE 
and interface energy Us = - wA, where 
w = 7~ + 7 2 - ~ 2  is the Dupr6 energy of 
adhesion, a material property independent of  
crack velocity which replaces the intrinsic sur- 
face energy 2? at an interface. The first dif- 
ferential of the energy can be written in the form 

dU = TdS + ed6 + (G - w)dA (1) 

with 
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Figure 1 Equilibrium contact of two elastic solids: (a) dead 
load, (b) testing machine with finite stiffness k m. 

G, which describes the variation of elastic energy 
with A, at constant 6, is the strain energy release 
rate. Note that wA is considered here as a kind 
of  potential energy which can be recovered by 
crack healing. The three relationships 

T = T(6, A, S)  (2a) 

e = e(6, A, s )  (2b) 

6 = 6(~, A, S) (2c) 

expressing intensive parameters in terms of  the 
independent extensive parameters, are the 

equations of  state of  the system. Knowledge of 
these three equations of state is equivalent to 
knowledge of the fundamental equation 
U = U(S, 6, A), and gives a thermodynamically 
complete description of the system. 

A system is in equilibrium if virtual pertur- 
bations of  the extensive variables leave its energy 
constant. However, equilibrium is often studied 
in the presence of  constraints such as constant 
pressure, constant volume or constant tem- 
perature. In this case, the Legendre transforma- 
tion of the energy U is used to exchange any 
variable Xj with its derivative Pj = (OU/OXj). 
The equilibrium of the system at constant Pj 
corresponds to the extremum of  the function 
O = U - PjXj. q,, which is the Legendre trans- 
form of the energy U, is called the ther- 
modynamic potential. In the present case 
we wish to study equilibrium at constant 



temperature, by allowing perturbations of  the 
area of  contact at constant load P, or at constant 
displacement ~ (fixed load or fixed grips con- 
ditions). Of  interest are thus the Helmholtz free 
energy F = U - TS ,  and the Gibbs free energy 
f# = U - T S  - P6 ,  whose differentials are 

d F  = P d 6  + (G - w ) d A  - S d T  (3) 

d ~  = - 6 d P  + (G - w ) d A  - SdT(4)  

Noting that - P 6  is the potential energy Up of  
the load, these expressions show t h a t  

Note  that the Maxwell relations (obtained from 
the equality of  the mixed partial derivatives of  (# 
or F) give 

with 

Equilibrium at fixed temperature and fixed load 
conditions (dT = 0, dP  -- 0) corresponds to an 
extremum of  N, and equilibrium at fixed tem- 
perature and fixed grips (dT = 0, d6 = 0) to an 
extremum of  F. In either case equilibrium is 
given by 

G = w (9) 

(The same equilibrium condition would be 
obtained at fixed A with a spring of  stiffness k m 

[3].) Equation 9 is the Griffith criterion which 
links two of  the three variables 3, P, A of  the 
equations of  state (Equations 2), so that the 
equilibrium curves 6(A) ,  A ( P ) ,  P(6 ) ,  are func- 
tions of  w. 

Fig. 2 represents the equation of  state,  
Equation 2b, for a sphere of  radius R, in contact 
with an elastic half space over an area of  radius 
a. Superimposed on the curves 6(P,  a) indepen- 
dent of  w, are the curve G = 0, which is the 
Hertz equation for solids with zero surface 
energy (w = 0), and the curve G = w which 
is the J K R  solution [6]. Observation of  equili- 
brium radii of  contact against load or displace- 
ment give w = 6 0 m J m  -2 for glass on poly- 
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Figure 2 Relations between elastic displacement ~ and radius 
of  contact of  two spheres, in reduced coordinates. The 
equilibrium curve is 6(a). Curves (6)e show the variation of  
6 with a at fixed load. 

urethane [2, 3] (varying with room humidity 
content). 

I f  G ~ w the area of  contact will spon- 
taneously change so as to decrease the thermo- 
dynamic potential. I f  G < w, Equations 3 and 4 
show that A must increase, and the  c r a c k  

recedes.  Conversely, if G > w the area of  con- 
tact must decrease to give dfr < 0 or dF  < 0, 
and the crack extends. G d A  is the mechanical 
energy released when the crack extends by dA. 
The breaking of interfacial bonds requires an 
amount  of  energy w d A ,  and the excess 
(G - w ) d A  is changed in kinetic energy if there 
is no dissipative factor. G - w  is the crack exten- 
sion force, which is zero at equilibrium. 

The equilibrium given by G = w can be 
stable, unstable or neutral. A thermodynamic 
system under a given constraint is stable if the 
corresponding thermodynamic potential is mini- 
mum, i.e. if its second derivative is positive. 
Thus, f rom Equations 3 and 4 stability is defined 
by 

> 0 at fixed grips 

( ~ G ) ,  
~-~ > 0 at fixed load 

or more generally by (~G/OA)A > 0 if the 
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machine has a finite stiffness kin. It can be shown 
that the stability range monotonically increases 
with the stiffness, from the fixed load case 
(k  m = 0) to  the fixed grips c a s e  (k  m = oo) [3, 8]. 

If, under a stable equilibrium, a fluctuation 
decreases A(dA < 0), G incrementally decreases 
and one has G < w: the crack recedes to its 
equilibrium position. It can only advance if the 
load P or the displacement 6 is slowly varied, 
bringing back G to the value w: one is dealing 
with controlled rupture of  an adhesive joint*. In 
this case one has 

OG dA + ~-~ d P  = 0(10)  dG = 

o r  

dG = ~ dA + d6 = 0 (11) 

Starting from a stable equilibrium with the 
two bodies compressed (P > O, 6 > 0), let us 
quasistatically decrease the load: one generally 
encounters a progressive reduction of  area of 
contact, i.e. a controlled rupture at dG = O, 
until a negative load Pc is reached where (OG/ 
dA)p < 0; the equilibrium becomes unstable 
and the crack spontaneously extends toward 
complete separation at constant Pc, with G - w 
increasing as A decreases. The load Pc corre- 
sponding to the limit of  stability is the adherence 
force in an experiment at fixed load. At fixed 
grips the adherence force c.ould be different. 

For  a sphere on a plane (Fig. 2), the adherence 
force at fixed load (Point C) is Pc = - ~ w R ,  
whereas the adherence force at fixed grips (Point 
D) is P = - ~ n w R .  Quasistatic loadings or 
unloadings follow the equilibrium curve 6(a); 
but for an instantaneous unloading from P to 
P ' ,  i.e. an instantaneous increase in G, one 
observes an instantaneous displacement at con- 
stant a (Branch L M  or LM' )  followed by a crack 
propagation at constant P towards a new equili- 
brium G = w if P '  > - ~ w R  (Branch M N )  or 
towards rupture if P ' < -  3nwR (Branch 
M ' Q ) .  Conversely, if one applies an instan- 
taneous loading from P '  to P, G immediately 
decreases at constant a, but as the stress intensity 
factor cannot be negative, Branch S T  of  the 
Hertz curve (G = 0) is followed (with a tan- 

gential connection between the sphere and the 
half-space); the crack then recedes at constant 
load P towards its new equilibrium G = w 
(Branch TL). Such paths have been effectively 
observed by Maugis and Barquins [2, 3] and the 
agreement with the theory is quite satisfactory. 

3. Kinetics of crack propagation in 
viscoelastic solids 

G - w (or G - 27) is the force applied by unit 
length of  crack. In a perfectly elastic solid, there 
is no dissipation and a crack subjected to a 
constant force G - w > 0 continuously 
accelerates. In a viscoelastic solid it undergoes a 
viscous drag and takes a constant speed v, a 
function of the temperature. The following 
expression has been proposed by Maugis and 
Barquins [2] for the kinetics of crack propa- 
gation: 

G - w = w~)(arv) (12) 

with the following assumptions: 

(a) kinetic energy is neglected; 
(b) the losses are limited to the crack tip zone 

where the stresses and the strain rates are high, 
so that gross displacements are elastic and G can 
still be evaluated by the elastic theory (with 
relaxed modulus) during kinetic phenomena; 

(c) results at various temperatures can be 
shifted to a reference temperature Ts = Tg + 50 
(where Tg is the glassy transition temperature 
measured at zero frequency) by using the WLF 
shift factor [11] at, where 

8.86(T- r~) 
log aT = 

101.6 + T -  Ts 

so that a master curve is obtained when studying 
adherence as a function of  the reduced para- 
meter arv [12-16] (a given value of  arv corre- 
sponds to either low speed at low temperature or 
to high speed at high temperature); 

(d) viscous drag is proportional to the thermo- 
dynamic work of  adhesion, as suggested by peel- 
ing experiments in various liquids [17] or on 
various substrates [18]. This means that losses 
only arise if the interface itself is capable of 
withstanding stress [18]. 

Thus, in Equation 12 surface properties (w) 

*The first stable cracks that have been studied are the double cantilever beam with a wedge [9] and the Hertzian cone crack 
[ lO] .  
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Figure 3 Reduced crack extension force against crack velocity for glass-polyurethane systems. 

and viscoelastic properties (q~) are completely 
decoupled from elastic properties, geometry and 
loading conditions included in G. The dimen- 
sionless function ~b(arv) is characteristic of  crack 
propagation in Mode I in the material. Once 
~b(arv) is known, Equation 12 allows one to 
predict any feature such as kinetics of detach- 
ment at fixed load, fixed grips or fixed cross-head 
velocity. 

Note that Equation 12 is different from an 
equation such as 

P = Pof(arv)  (13) 

where P0 would be the quasistatic adherence 
force. For  a sphere, for example, P0 = {r~wR is 
a constant, whereas G depends on the load and 
the radius of  contact. It is also different from a 
Griffith formula a ~- (Ew/a) I/2 where w would 
be a rate dependent quantity. 

Equation 12 was verified for glass on poly- 
urethane for various geometries where G can be 
computed (sphere, flat punch, smooth-ended 
spheres, peeling) [2, 3, 5] by studying crack 
propagation at fixed load (paths such as M N  or 
M ' Q  for the sphere) and at various tem- 
peratures. As shown in Fig. 3, ~b is independent 

of the geometry and varies a s  (arv) ~ over about 
five powers of ten, a result often found for the 
peeling of rubber-like materials [14, 19, 20]. 

Water adsorption decreases the Dupr6 energy 
of adhesion, and hence the viscoelastic losses, 
according to Equation 12. This point was veri- 
fied by measuring the rolling resistance J -  of a 
glass cylinder of length l rolling on the inclined 
sample (G ~- J / l )  as a function of  velocity for 
various humidity contents [3, 20, 21]. Fig. 4 
shows the translation of the G(v) curves with 
water adsorption. As G > w in these experi- 
ments, the shift clearly arises from the multipli- 
cative term w on the right hand side of Equation 
12. From Equation 12 the ratio of Dupr6 energy 
of adhesion w, in State 1 of  relative humidity to 
that of  w2 in State 2 is given by the ratio of the 
strain energy release rates at the same crack 
velocity: 

wl GI 
~/ - - ( 1 4 )  

w2 G2 

Fig. 4 gives a factor 0.5 in G between relative 
humidities of  30% and 70%; taking w, = 50 mJ 
m -2 at 70% r.h. gives w2 = 100mJm -2 at 30% 
r.h. (i.e. a decrease Aw = 5 0 m J m  -2 by adsorp- 
tion). This result is in complete agreement with 
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Figure 4 Rolling resistance of a glass cylinder on poly- 
urethane for various room humidity contents: o 30~ r.h., 

7 6 0 m m H g ;  �9 30%, 20ram; [] 40%, 760mm; �9 40% 
20 mm; zx 70% 760 mm; �9 70%, 20 ram. 

the values deduced from the variation of  equilib- 
rium radii of contact of  a glass ball on poly- 
urethane at various room humidities. This shift 
in the curves is observed as long as the medium 
can reach the crack tip. The experiments of  
Carr6 and Schultz [22], on the peeling of  elasto- 
mers on aluminium in oils of  similar surface 
energy but of  various viscosities, clearly show 
that one returns to the curve for peeling in air at 
critical velocities depending on the oil viscosity 
(Fig. 5). 

Using the plane strain relation G = [(1 - 
v2)/E]K~, where v is the Poisson ratio and E is 
Young's modulus for axisymmetric punches, the 

experimental results of  Fig. 3 can be plotted as 
v against K (Fig. 6), and the equation 

G -  w = w~( T)v" 

which represents the results of  Fig. 3 becomes 

v = - 1 ( 1 5 )  

where K0 corresponds to an equil ibrium crack 
(G = w). The bending of  the curves, when K 
tends towards Ko is very marked. 

When G approaches w, the crack speed 
decreases and is zero for G = w. For  G < w, 
the crack speed reverses and the area of  contact 
increases. This point was studied by loading 
spheres on polyurethane [3]. As G cannot be 
negative, crack closure generally begins with 
propagation at G = 0; the contact is Hertzian 
with a tangential connection; there is no stress 
singularity at the crack tip (K~ = 0), so visco- 
elastic losses are negligible and crack propa- 
gation is very fast. Once the Hertzian area of  
contact is reached, stress singularity and discon- 
tinuity of  displacement reappear, and the Mode 
I crack very slowly recedes to its equilibrium 
position with a driving force w - G varying 
from w to 0. So, if the equilibrium radii of  con- 
tact seem to be more quickly reached by loading 
than by unloading [23, 3], it is because most of  
the area of  contact is instantaneously reached. 
Fig. 7 compares such kinetics of crack propa- 
gation and crack healing. 

The adherence of  solids is more often studied 
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Figure 5 Peeling of elastomers on aluminium in oils of  similar 
surface energy but  of  various viscosities: �9 in air; [] 12 200 cP 
PDMS; zx 970cP; 0 340cP (from [22]). 
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w i t h  a tensi le test m a c h i n e  at  cons tan t  cross- 

head velocity than at constant load, but the 
kinetics of separation are less easy to interpret, 
due to the competition for increasing G with 
time between increasing 5 with time at constant 
a, and decreasing a at constant 5. If  the machine 
has an infinite rigidity k m (Fig. 1), one has A = 

and the variation of G with time is given by 

dG dG ~ + a (16) 
dt - ~  ~ a  

The recorded force first increases, then 
decreases; the maximum value, termed the tack 
force, is a measure of the adherence in this par- 
ticular experimental condition, and has no clear 
physical, significance; the area under the curve, 
termed tack energy, is equal to the work ~Gda of 
the singular stress at the crack tip. "Tackiness" 
refers to the ability of an elastomer to adhere 
instantaneously to a solid surface, or to itself, 
after a brief time of contact under low pressure. 
Probe tack testing can be analysed by Equation 
12, and tack curves obtained by computer 
integration closely coincide with experimental 
ones [24]. Fig. 8 is for a spherical probe and 
shows that even at  very low cross-head velocity 
the viscoelastic effects considerably increase the 
adherence force compared to the elastic (or 
quasistatic) adherence force at fixed displace- 
ment (Point D). 

The stability of equilibrium depends on the 
stiffness k m (or the compliance Cm) of the testing 
machine, for elastic energy stored in the spring 
(Fig. l) can be used for crack propagation. This 
stability is given [3] by 

-ffA = - \t3AJ~ 
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Figure 7 Rad ius  of  con tac t  aga ins t  t ime  o f  a glass  bal l  in con tac t  wi th  a po lyu re thane  surface: O du r ing  un load ing  f rom 
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or in alternative form (Hutchinson and Paris 
[25]) by 

- -  

1 
x 

Cm "~- 

cm+~ 

where 

P 
A = 6 + ~m = 6 + C~P (18) 

is the imposed cross-head displacement. The 
quantity (#P/#6)A is the stiffness of the contact 
(or the cracked specimen) and is positive. The 
fixed grips case corresponds to km = ~ ,  and the 
fixed load case t o  k m = 0. Equation 17, which 
shows that (#G/OA)A can be negative or zero 

(unstable or neutral equilibrium) whereas (9G/ 
c~A)6 is positive, was well verified by Barquins 
[26] with adherence of  glass balls on elastomers. 
Fig. 9 shows how a given displacement A can 
lead to a new equilibrium or to rupture accord- 
ing to the value of km. 

As elastomers have no plastic deformation at 
the crack tip, the deformation is completely 
reversible, and they do not suffer damage from 
cyclic loading. Fig. 10 (from Barquins [27]) com- 
pares cyclic loading-unloading and simple 
unloading. The number of  cycles before rupture, 
the life-time and the displacement can be pre- 
dicted with a high accuracy using Equation 12 
and assuming that crack healing is instan- 
taneous, and that portions healed for 1 sec have 
low energy of adhesion (about 5 m J m  -2) com- 
pared with the value w = 5 7 m Jm  -2 after 
10 min dwell time. 

4. V i s c o e l a s t i c  l o s s e s  
Viscoelastic losses at the crack tip are linked 
with the frequency dependence of E",  the 
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Figure 9 Variation with time of 

the radius of contact of a glass 

ball on polyurethane, for the 

same imposed displacement 

A = - 1.6 mm and various 

values of stiffness k m (from [26]). 

imaginary part of Young's modulus (loss 
modulus). As a matter of fact E"  varies with the 
frequency as co0.6 for polyurethane at low fre- 
quency (Fig. 11, from [28]). 

When the crack propagates and approaches a 
point at the interface, the stress normal to the 
interface rises to a maximum and then abruptly 
falls off to zero. In that cycle where all the fre- 
quencies co are excited, with a frequency distri- 
bution depending on crack speed, energy is lost, 
and the problem is to connect the frequency 
dependent E '  (co) and E"  (co) to the speed depen- 
dent qS(v). Since the elastic solution for crack 
propagation is known, the theory of visco- 
elasticity allows us in principle to deduce the 
viscoelastic strain energy release rate Gvisc. from 
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Figure 10 Variation with time of the contact radius of a glass 

ball on polyurethane for rectangular cyclic loading from 

P = 30mN (t A = lsec) to P '  = - 3 0 m N  (T R = 5sec). 
Eleven cycles are observed before rupture. Curve II shows 
the evolution of the contact radius for a simple unloading 
from P to P '  (from [27]). 

a knowledge of E'(co) and E"(co). A number of 
tentative attempts have recently been made 
[29 33] and Christensen (private communi- 
cation) has pointed out that Equation 12 directly 
follows from his general theory [30] and did not 
need to be assumed. One can hope that in the 
near future, the function ~b(arv) will be directly 
derived from measurements of E'(co) and 
E " ( ~ ) .  

Note that a viscoelastic model such as the 
parabolic Zener model 
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Figure 12 Frequency dependence of  E '  and E" for poly- 
urethane (from [7]). 

must be used to have E"(~o)~- (090"  when 
(or ~ 0. Such a model corresponds to a con- 
tinuous spectrum of  relaxation times, and leads 
to a symmetrical Cole-Cole diagram with 
E"(~o) ~- (~z ) -"  when coz ~ oo. 

At sufficiently high frequencies or low tem- 
peratures, the loss modulus decreases (Fig. 12), 
and the behaviour tends to become elastic, so 
c~(arv) would decrease with v at higher speed. A 
number of  observations on peeling [12, 34] or 
rolling [20] confirm this point. The implication 
of such a negative-resistance branch, is dis- 
cussed below. 

system is 

1 
diS - (G - w)dA (21) 

T 

Crack propagation at G = w, like the branch 
L N  in Fig. 2, is thus a reversible process. The 
entropy production rate (a non-negative quan- 
tity) is 

diS  1 
P[S] - - 

dt T 

dA 
( 6  - w ) - ~ -  > / 0  

(22) 

as pointed out by Rice [35]. Letting 

G - w wr 
X k = 

T T 
and 

dA 
Jk - dt - 2nay 

the generalized force and flux, the condition of  
stability of  this irreversible process of  energy 
dissipation (Glansdorff and Prigogine [36]) 
corresponds to a non-negative value of the 
excess entropy production rate: 

Y~ ~Jk'~Xk >>- 0 (23) 
k 

i.e. 
2naw 

T 6dp6v >1 0 

5. Negative resistance 
A simple argument shows that a negative- 
resistance branch cannot be observed: if the 
crack accelerates, the resistance to crack 
propagation decreases, and the crack further 
accelerates, and conversely if the crack slows 
down, so that stable crack propagation cannot 
occur. This can also be proved by a more sophis- 
ticated thermodynamic argument. 

Comparing Equation 1 with the principle of  
energy conservation 

d U  + d K  = Pd6 + dQ (19) 

where dQ is the heat received, and neglecting the 
variation dK of  kinetic energy, it becomes 

T d S  = dQ - (G - w)dA (20) 

Comparing with 

T d S  = dQ + TdiS  

it appears that the entropy produced in the 

where 6 refers here to small increments. The con- 
dition of  stable crack propagation is thus 

d~b ~> 0 (24) 
dv 

The negative-resistance branch of  ~b(v) cannot 
be observed. This condition of  stable or unstable 
crack propagation (a material property) must 
not be confused with the condition of  stable or 
unstable equilibrium defined by the sign of  OG/ 

OA, which is a property of the tested geometry. 
However, the resistance to crack advance can- 

not continuously decrease. Other positive 
branches due to a complicated loss spec- 
trum can occur, but anyway the crack speed 
cannot exceed the Rayleigh velocity CR, and G 
(deduced from external forces by formulae valid 
for quasistatic cracks) increases toward infinity 
as v ~ CR, SO that the curve log G-log v can be 
seen as the superposition of  a curve for brittle 
fracture with dynamic effects, and a curve for 
viscoelastic losses (Fig. 13). Let Gc be the critical 
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Figure 13 Schemat ic  d i a g r a m  of  a log G- log  v curve  showing  

viscoelast ic  effects. 

strain energy release rate corresponding to the 
end of the first positive branch, at a speed v c such 
that 

a c = w [ 1 - - - 1 - ( ~ ( v c )  ] = w f  (25) 

The crack takes a constant velocity v at constant 
G as long as G < Gc (subcritical crack growth). 
At G~ the crack velocity jumps on a second- 
position branch, and rupture appears cata- 
strophic. In this model one has: 

G < w (or 27) crack closure 

G > w (or 27) crack advance 

w (or 27) < G < G~ subcritical crack growth 

G >~ G~ catastrophic crack propagation. 

If v~ is small, the subcritical crack growth is not 
apparent and the condition G = G~ for crack 
velocity discontinuity and catastrophic failure 
can easily be confused with the Griffith con- 
dition G = 27 (or w) for crack equilibrium by 
writing G = 27r (or w0 where 7f is a "fracture 
surface energy". (For glass-polyurethane Gc is a 
thousand times the Dupr6 energy of  adhesion.) 
However, if so, subcritical crack growth in a 
vacuum becomes incomprehensible, and stress 
corrosion must be invoked to explain the 
increase in crack velocity in the presence of  an 
environment. As we will see below this proposed 
model can also explain embrittlement effects and 
stick-slip crack motion when a mean velocity is 
imposed in the negative-branch range. 

6. Subcritical crack growth in 
glasses and ceramics 

Delayed failure in glasses has been known since 
the early work of  Grenet [37] and Milligan [38]. 
The existence of a threshold stress approxi- 

K o K c log K 

Figure 14 Schemat ic  d i ag ram for subcri t ical  c rack  g rowth  in 

glass. 

mately 20 to 30 % of the short-time failure stress 
was shown by Holland and Turner [39]. That 
phenomenon of delayed failure was termed 
static fatigue by Baker and Preston [40] who 
emphasized the influence of humidity. The first 
measurements of crack velocity in water vapour 
were performed by Wiederhorn [41, 42] using 
double cantilever beam (DCB) specimens. Crack 
velocities were first reported as a function of 
applied load [41, 42], and later plotted against 
stress intensity factors [43, 44] (eliminating crack 
length and specimen geometry), and the three 
regions I, II, III of the curves (Fig. 14) were 
described, with Region II claimed as corre- 
sponding to crack motion limited by the rate of 
transport of water to the crack tip. Evans [45] 
introduced the double torsion (DT) test, more 
suitable for studying very slow crack propa- 
gation, and following Charles [46] showed that 
the empirical equation 

v = A ( T ) K  m (26) 

can fit most of the v, K curves in Region I and 
can be used for lifetime predictions. Although 
the presence of water is of first importance, sub- 
critical crack growth has been observed in a 
vacuum [47, 48]. 

A number of theories have been proposed to 
explain subcritical crack growth and have been 
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reviewed [49]. In the model proposed here by 
analogy with the results for adherence of visco- 
elastic solids, the static fatigue limit K0 of glasses 
and ceramics corresponds to an equilibrium 
crack and gives the intrinsic surface energy. 
When K > K0 the crack advances according to 
the Griffith criterion, with a velocity v depending 
on the loss spectrum (internal friction) of the 
material, and the phenomenological equa~on 

G - 27 = 27c~(T)~b(v) (27) 

can be used. For temperatures below Tg the 
WLF shift factor (Equation 13) cannot be used 
and the temperature dependence is described by 
an unknown function c~(T). As noted by 
Wiederhorn et al. [48] and Freiman [50], the 
critical stress intensity factor is simply one point 
on the v - K  curve where the velocity sharply 
increases. It is assumed here that  at Kc the crack 
velocity jumps to higher values. In Region I on 
a wide range of crack velocities, the function 
~b(v) has the form ~b(v) = v" and Equation 27 
becomes 1 (K 2 )l/n 

v = ~ \~o2 -- 1 (28) 

which gives Equation 26 with m = 2/n for 
K ~> K 0. This equation takes into account the 
bending of v - K  curves near K0, clearly visible 
below 10 _9 m sec-~ in published results [44, 45, 
51-54], and allows for a more precise lifetime pre- 
diction. Unfortunately no clear value of K0 in a 
vacuum can be found. In the presence of humidity 
the whole log v - l og  K curve is shifted towards 
lower values of K(Fig. 14), but this phenomenon 
is obscured by the limitation of the arrival rate of 
vapour or viscous drag of water at the crack tip 
(Region II) and one generally returns 
(sometimes after cavitation, see Section 7) to the 
vacuum values (Region III) at high velocity. In 
the presence of humidity the static fatigue limit 
K0 can be reduced* to K0 = 0.37 MPa m ~/2, i.e 
for plane stress (with DCB, compact tension 
(CT) or DT specimens) a surface energy 7 = 0.9 J 
m -2 for silica [56], K0 = 0 .25MPam 1/: (7 = 
0.45 J m -2) for soda lime [44, 52] or borosilicate 
in water [44], whereas the critical stress intensity 
factors are Kc = 0 .80MPam ~/2, i.e. ~,f = 4.4J 
m -2 for silica [56, 57] and K~ = 0 .76MPam ~/2 
i.e. 7r = 3 .9Jm-2 for soda lime [48, 57]. The 

ratio 7f/~f is thus relatively small for glass (about 
10) compared to that for elastomers (about 
1000). 

As in Section 3, the ratio of  the surface energy 
7, in Environment 1 to that 72 in Environment 2 
is given from Equation 27 by the ratio of  strain 
energy release rates at the same crack velocity 
and temperature (not at the same cross-head 
speed): 

7, GI K~ 
q 72 G2 /(22 (29) 

Estimates from the literature data give the ratio 
0.6 for soda lime between 0.017% and 100% 
r.h. [52], 0.5 for commercial glass between 
octanol with 15% humidity and water [58], 0.6 
for soda lime in butyl alcohol solutions with 
different quantities of dissolved water [59], 0.7 for 
silica glass between 0.08% r.h. and water [56]. 
Taking the surface energy in 100% humidity as 
71 = 0.45Jm-2 for glass and 7, = 0 .9Jm-2 for 
silica, the variation of  surface energy A 7 by 
water adsorption are respectively 0.30, 0.45, 0.30 
and 0 .40Jm -2. These reductions in surface 
energy must be in agreement with the Gibbs 
adsorption formula 

dp (30) A 7 = _ RTj0S"'FpfP-- 

where F is the adsorption in moles per unit area 
at the pressure p. Such determination of  A 7 on 
quartz powder by Boyd and Livingston [60] or 
glass powder by Schultz and Simon [61] gave 
respectively A 7 = 0.25 and 0 .23Jm -2 in 
saturated water vapour, which is of similar order 
of magnitude. The intrinsic surface energy of 
glass in a vacuum can thus be estimated to  be 
about 0.8 Jm  -2. 

Similar shifts of log v-log K curves with water 
adsorption have been observed on PMMA [62] 
and epoxy resins [63] with a ratio G1/G2 of about 
0.5. 

Note that the idea of K0 corresponding to 
intrinsic surface energy has been already 
proposed by Hasselman et al. [64] and Rice [35]. 
Orowan [65] proposed that the reduction of 
failure stress in long-term experiments could be 
explained by a reduction by a factor of  ten in 
surface energy from the value 7f in vacuum to the 
value 7 in moist air. This is a typical confusion 

*At these low K values, great care must be taken to avoid residual stresses. In particular the groove cut along CT, DT or 
DCB specimens to guide the crack, can introduce errors, if not properly annealed [55]. 
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between G~ and the Griffith criterion. Michalske 
and Freiman [66] recently proposed a molecular 
interpretation of stress corrosion in silica, 
suggesting that environments which enhance 
stress corrosion are composed of molecular 
groups with electron donor sites on one end and 
proton donor sites at the other. This is not in 
contradiction with reduction of surface energy 
by adsorption, and reflects the quantum mech- 
anical aspect of modern theories of adsorption. 
Weidman and Holloway [51] in their experi- 
ments on DT specimens of glass observed that 
the change in crack speed following a change in 
load was instantaneous and that the same crack 
speed was obtained at any given load, irrespec- 
tive of whether the previous load was larger or 
smaller than the given one. This is very similar to 
the results of Maugis and Barquins [2] on 
adherence of elastomers. Note also how the 
transition Region II closely resembles the tran- 
sition observed by peeling elastomers in liquids 
of various viscosities [22]. 

For K < K0 the crack must heal according to 
the Griffith criterion. Such crack healing in 
brittle solids has been studied in a number of 
papers, as reported by Hockey [67]. Wiederhorn 
and Townsend [68] have shown that recovery of 
strength during healing was approximately 80% 
for cracks formed by shock. Observations of 
brittle crystalline solids in the transmission elec- 
tron microscope [67, 69, 70] have revealed inter- 
facial misfit dislocations which form when crack 
interfaces rebond in imperfect registry, and no 
evidence for crack tip plasticity. It is this absence 
of plasticity which explains why the static 
fatigue limit of glasses and ceramics corresponds 
to equilibrium cracks and to the true Griffith 
criterion. It explains also that glasses and 
ceramics, unlike metals, do not suffer damage 
from cyclic loading and that crack growth rates 
obtained under cyclic stress conditions can be 
directly predicted from slow growth studies 
[71-74] as observed on cyclic fatigue at glass- 
elastomer contact by Barquins [27]. 

The surrounding medium can have two 
opposite effects. It generally reduces the surface 
energy and thus the strength of the material, but 
if not saturated with the components of the 
material it can dissolve surface layers, including 
surface cracks, and blunt the crack tips, thus 
increasing the strength. This Joffe effect, well 
studied by Stokes et al. [75], can be exemplified 

with an irradiated KC! crystal [76]: such a 
crystal is weak and brittle if deformed in air, 
but up to 25 times stronger and considerably 
more ductile if deformed in water, i.e. while 
being slowly dissolved. Glass left in air or 
immersed in water or acid in the absence of 
stress (ageing) tends to gain strength [77-82]. So, 
water strengthens glass at stresses below that of 
the static fatigue limit and weakens it at stresses 
greater than that of the static fatigue limit [41]. 
Another complication with corrosive media is 
the ion exchange between surface layers and the 
solution causing internal stresses and spon- 
taneous cracking [83, 84]. 

Fracture surface energies of glass and 
ceramics have sometimes been evaluated by the 
work of fracture [85-88] by measuring the area 
below the load-displacement curve. This work 
of fracture is quite similar to the tack energy of 
elastomers [24]. Its value ~]oGdA is not a 
material property (except for quasistatic crack 
propagtion at G = 27); it depends on the cross- 
head velocity (Fig. 8) and on the stiffness of the 
apparatus. 

7. Velocity jump, stick-slip and 
acoustic emission 

Let us return to Fig. 13. It was said, in Section 
5, that as long as G < Go, subcritical crack 
growth is observed with v < vc. When G = Go, 
the velocity jumps to v~, on the second positive 
branch. On the other hand, if a mean velocity V 
is imposed, unstable crack growth will be 
observed. The velocity jumps from A to B at Gc, 
but this velocity is too high and the crack slows 
down to Point C where the velocity is still too 
high, then jumps to Point D where the crack 
seems arrested; the velocity increases to Vc (too 
low) and jumps to Point B. A stick slip motion 
thus occurs, where most of the time is spent on 
the slow crack growth branch DA. 

7.1. Veloci ty  j u m p  or s t ick-s l ip?  
Whether velocity jump or stick slip motion 
occurs depends on the stability of the system 
given by Equation 17. This stability depends not 
only on the geometry of the specimen, but on the 
loading system [a classical example is DCB (see 
Appendix) where (~G/OA)p < 0 and (~G/ 
~A)6 > 0]. If (6G/OA)a < O, G continuously 
increases as the ligament A decreases, the velocity 
cannot be controlled and velocity jump occurs. If 
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(OG/OA)A > 0, the rupture is controlled, the crack 
velocity v is a function of the crosshead velocity 
A, and stick-slip occurs if one tries to impose a 
mean velocity between v~ and v2. The first case 
corresponded to DCB at fixed load or single 
edge notched (SEN) specimens tested with an 
Instron machine. The second case corresponds 
to DCB, tapered DCB (TDCB), DT specimens 
and peeling. (The three last geometries have a 
neutral equilibrium.) Velocity jump and stick- 
slip are easily observed in polymethyl methacry- 
late (PMMA) and epoxy resins where vr is 
relatively low. 

7.2. Velocity jump 
Velocity jump in PMMA has been observed by 
Berry [89], Marshall et at. [90], Drll and Weid- 
mann [91], Margolis et al. [92] with SEN speci- 
mens, and by Dobbs et al. [93] on tension 
specimens with an internal "penny-shaped" 
crack produced by a laser. At room temperature 
the velocity jumps from about 0.1 to about 10 to 
100 m sec-~. This jump, associated with acoustic 
emission, occurs at Kc and is always preceded by 
slow crack growth. Fig. 15 (from [92]) shows 
P-fi curves at ~ = 5mmmin  t for SEN 
specimens with various initial crack lengths. 
Slow crack propagation commences on the straight 
line and then deviates until a load Pmax is 
reached. Slow crack growth still operates 
beyond Pmax, and the slow to fast transition 
occurs approximately at Point S. Clearly Pmax is 
the exact analogue of tack force in Fig. 8 (com- 
puted from the law for subcritical crack growth) 
and has no simple physical significance. Its value 
depends on the cross-head velocity A. Since K c at 
instability is generally computed from Pm~x and 
the crack length taken as the initial length plus 
the slow crack growth portion measured on the 
fracture surface, its value can be in error. Deter- 
mination of Kc would be more accurate with 
experiments at fixed load, although experiments 
by Marshall et al. [90] show that Kc is not sen- 
sitive to A above -50 ~ C. 

7.3. Stick-slip of the first kind 
Stick-slip is a widely observed phenomenon. 
The first published results are probably those of 
Bailey [94] on cleavage of mica, Dannenberg [95] 
on blister tests in adherence, Gardon [34], and 
Broutman and McGarry [96] on DCB specimens 
of PMMA. Stick-slip is more easily studied by 
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Figure 15 Load displacement (P-h) curves for P M M A  SEN 
specimens with various initial crack lengths, Cross head 
velocity/~ = 5 mm min-I  (from [92]). 

peeling, for G is proportional to the applied load 
and independent of crack length [97, 98]: 

P 
G = ~ (1 - cos 0) (31) 

Take an adhesive tape and pull it. At low vel- 
ocity the motion is continuous and the crack 
velocity v is related to pull rate A by 

d6 
dt 

where 6 is the elastic elongation (Hooke's law). 
At higher speed it is jerky with characteristic 
acoustic emission, and the wavelength of trans- 
verse striations increases linearly with the peeled 
length L [99] (due to variation of stiffness with 
length); at very high speed it becomes con- 
tinuous again. Place it in a refrigerator for a 
moment; the motion is jerky at very low speed. 
Heat it at about 40 ~ C, and the motion is con- 
tinuous, This temperature dependence is 
accounted for by the WLF shift factor ar 
(Equation 13). Fig. 16 (from [100]) is such a 
master curve for pulling rates between 5 x 10 -3 
and 10 z cm min- 1, and temperature between 312 
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and 240 K. Regions A, B and C are the stable 
branches, and stick-slip occurs in region B C  

with an amplitude decreasing with pulling rate. 
Sometimes three stable branches and two stick- 
slip regions can be observed [14]. However, as 
stick-slip in adhesive systems can be obscured 
by the adhesive-cohesive transition, we will 
examine stick-slip in PMMA and epoxy resins. 

Stick-slip in glassy polymers has been studied 
with DCB, TDCB, DT and CT specimens. In 
epoxy resins, it occurs even in a vacuum [101] 
and is thus an inherent property of materials. 
When only one stable branch can be observed, 
unstable crack propagation can be obtained 
either by lowering the cross-head velocity as in 
most epoxy resins, or by increasing it as in 
PMMA. For epoxy resins at room temperature 
in air, Young and Beaumont [102] have shown 
that continuous propagation is not possible 
below a crack velocity of 6 x 10-4msec -1. 
This velocity can thus be considered as the 
velocity v2 of Fig. 13. For PMMA, as shown 
by Marshall et  al. [90], the limit of stable 
velocity Kc, vc (Point A in Fig. 13) below which 
crack velocity is given by Equation 26 corre- 
sponds to the point of velocity jump observed 
with SEN specimens. P-6 curves during stick- 
slip have a characteristic "sawtooth" aspect with 
two discontinuities, the higher giving K~, Gi at 
crack initiation, the lower giving Ka, Ga at crack 
arrest. From Fig. 13, it would be anticipated that 
Ki and K~ remain constant and equal to the 
maximum and the minimum of the curve, when 
the mean velocity V varies from v~ to v2. How- 
ever, the experimental results on stick-slip show 

that Ki decreases and Ka slightly increases with 
the mean velocity V, as shown in Fig. 17 (from 
[103]) and in Fig. 16. 

This probably arises from inertial effects 
which have been neglected in the model. When 
the difference between Ki and K a is large, 
propagation occurs by large jumps, whereas 
when it is small the jumps are small, and when Ki 
is equal to Ka, the propagation is continuous 
[103]. Slowing down of the crack (from B to C) 
has been reported by Yamini and Young [103], 
and the smooth decrease of G from Gi to Ga by 
Mostovoy et  al. [104]. As discussed above, the 
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on Epikote 828 specimens for different curing periods (from 
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stability depends on the stiffness of  the testing 
machine. When the stiffness is decreased, for 
example, by inserting a plasticwedge instead of 
an aluminium wedge in a DCB [105] or by insert- 
ing a soft spring between the machine and a 
peeled tape [106], the stick-slip wavelength 
increases. At the limit k m ~ 0 one has an infinite 
wavelength corresponding to the velocity-jump 
case at fixed load. 

Fast propagation along the second positive 
branch in PMMA has been studied by Green 
and Pratt [107] who showed that, contrary to 

�9 what is observed at low crack velocity, the stress 
intensity factor must be increased five- to ten- 
fold for increase of the crack velocity by one 
order (Fig. 18). Similar results have been 
obtained by Mostovoy et al. [104] for epoxy 
adhesives. Note that Broutman and Kobayashi 
[108] have described a second discontinuity at 
approximately 50 m sec ~ in PMMA in addition 
to the one at 10 ~ m sec -1. At these high G values 
on the second stable branch, G can reach Go 
ahead of the crack tip, especially at stress con- 
centrators such as inclusions, so that fast cracks 
can be created ahead of  the main crack. These 
secondary fractures extending radially interfere 
with the primary crack to give parabolic or 

hyperbolic markings, as first observed by Kies 
et al. [109] on polymers and Smekal [110] on 
glass, and further studied by Cotterell [1 l 1]. The 
author has attempted to rationalize the smooth 
and rough fracture surface, or the "mirror"  and 
"mist", with the various regimes of crack 
propagation, but the situation is not clear. 

Velocity instabilities were early associated 
with decreases in crack resistance, with velocity 
leading to auto-accelerating effects [8, 12] 
expressed as dG/dv  < 0 or dR/dv  < 0. Various 
reasons have been invoked for this decrease: 
molecular relaxation and internal friction [112], 
isothermal to adiabatic transition causing ther- 
mal softening [113], and transition in craze 
formation [107]. The very sensitive influence of 
curing agents, the low velocity at which stick- 
slip can be observed, and the absence of craze in 
epoxy resins give more probability to internal 
friction effects. Curves with a negative branch 
between two positive ones have been published 
[90, 113]. A cycle similar to that proposed here 
was given by Aubrey et al. [114] to explain 
stick-slip in peeling, but the second positive 
branch and the portion B C D  of the cycle were 
not described. 

7.4.  V e l o c i t y  j u m p  a n d  s t i c k - s l i p  
a s s o c i a t e d  w i t h  c a v i t a t i o n  

A second kind of stick-slip exists, first observed 
by Benbow [115] in PMMA. If a slow, stable 
crack is wetted with water, the crack apparently 
stops growing and the clamped ends of  the speci- 
men can be separated by a considerable amount 
before the crack jumps forward. When the crack 
jumps forward it is travelling in dry material and 
reaches the position it would have had in the 
absence of  water (Fig. 19). The apparent frac- 
ture energy can be raised to four times that of the 
dry material by the addition of water. Similar 
results with DT specimens were found by 
Hakeem and Phillips [116, 117] with methanol, 
and Mai [118] with CC14. In epoxy resins where 
stick-slip is observed at low speed and con- 
tinuous propagation at high speed, the effect of 
water can be to suppress continuous propa- 
gation and cause the crack to jump over the 
entire range of cross-head displacement rates 
used, as observed by Yamini and Young [101, 
103], or to change propagation from unstable to 
stable [119]. 

Explanations can be found from the beautiful 
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Figure 19 Influence of wetting on crack propagation in 
P M M A  (from [115]). 

experiments of Frechette and co-workers 
[120-122] on the propagation of cracks 
partially filled with water in SEN specimens 
of glass. For crack velocities below 30mm 
sec- l  water facilitates crack propagation 
compared to air, as discussed in Section 6; at 
about 30 mm sec ~ (equivelocity point, Point K) 
wetted and non-wetted cracks require the same 
stress intensity factor, whereas at velocities 
above 30mmsec- '  the viscosity hinders crack 
propagation until cavitation occurs at 
vcv = 40mm sec-' and crack velocity instan- 
taneously jumps to its values on the dry curve 
(Fig. 20a). A scarp is formed on the fracture sur- 
face at the point where the velocity jumps from 40 
to 200 mm sec- ~, and the appearance of fine cavi- 
tation bubbles at velocities slightly lower than 
v~ v explains the formation of hackles. A slight 
modification of Fig. 20a can account for stick 
slip in PMMA in the presence of liquids. Let us 
assume that K for cavitation is higher than K~ in 
air (Fig. 20b). An imposed velocity Vgives stable 
propagation in air (Point I). Inserting a liquid 
causes an apparent crack arrest (Point J), so that 
displacement and stress intensity factor must be 
increased until cavitation occurs at Point A. The 
velocity jumps to Point B, and a stick-slip cycle 
A BCD occurs at the mean velocity V. If  V is 
lowered below v~,, stick-slip disappears. If  the 
velocity for cavitation is higher than vc, stick- 
slip propagation in air can be changed into 

*The same slope in Region II can be found in [125]. 
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Figure 20 Schematic diagrams showing the effect of viscous 
drag at the crack tip. 

stable propagation in liquid for Vc < V < vcv. 
These interpretations are speculative and need 
further experiments for confirmation. 

In Branch II of Fig. 20a the resistance to crack 
advance comes essentially from viscous drag in 
the liquid, and energy losses at the crack tip 
within the material becomes negligible. The 
situation is thus quite similar to that described in 
the very elegant paper by Burns and Lawn [123]. 
They inserted a wetting liquid between two glass 
strips and ruptured the film by driving in a 
wedge, as in DCB experiments at fixed grips. 
The stable equilibrium was correctly given by 
G = 27, where G is the strain energy release rate 
for DCB, computed from the glass arms only 
and 7 the surface energy of the liquid. They 
noted the influence of viscosity: for water, 
periods of several minutes were required to 
reach equilibrium, and for heavy oils, viscosity 
prevented equilibrium from being reached 
within a period of days. In such a case, the crack 
velocity v would be proportional to the driving 
force G -  27 (Newtonian viscosity) and for 
G > 2?, log G-log v and log K-log v would 
display slopes of 1 and �89 respectively. Fig. 5 
clearly shows this slope in the transition zone at 
the two lower viscosities, and Fig. 21 (from 
Williams and Marshall [124]) for glass in paraf- 
fin shows both the slope of �89 and the velocity 
jump studied by Michalske and Frechette [122]. 

Hydrodynamic phenomena and conditions 
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Figure 21 Crack growth rate for 
inorganic glass in various 
environments: zx water; 0 air 
(50% r.h.); �9 dry paraffin (from 
[124]). 

for cavitation in cracks filled with liquids have 
been discussed by Perrone and Liebowitz [126], 
Newman and Smyrl [127], Wiederhorn [49], 
Carr~ and Schultz [22] and Michalske and 
Frechette [122]. These last authors proposed the 
following equation for cavitation velocity: 

vcv = 2/ffX.2_l _ X]-') (32) 

where YL and/~ are surface energy and viscosity 
of the liquid, r the radius of the bubble which 
just fits in the crack opening, P the external 
pressure, 0t the half-angle crack opening, and X~ 
and X2 are the positions of the open end of the 
crack and the cavitation bubble respectively. 

7.5. Acoustic emission 
In the proposed model, acoustic emission occurs 
only when the crack velocity jumps from one 
positive branch to the other, in agreement with 
Rose's [128] proposal that acoustic emission 
corresponds to a crack starting or stopping 
abruptly. This is in apparent contradiction with 
the results of Evans and Linzer [129], Evans 
et al. [130] and Nadeau [131] showing that 
the rate of acoustic emission in glass exhibits 
the same functional dependence on K as does 
subcritical velocity. However, as shown by 
Nadeau [131] this acoustic emission is caused by 
interaction between the moving crack and 
defects on the surface. (This raises the possibility 
of correlation between acoustic emission bursts 
and Wallner lines.) No such interaction is 
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expected for Hertzian cone cracks, and as a 
matter of fact the results of Swindlehurst and 
Wilshaw [132] show that a single Hertzian cone 
produces a single emission burst, most probably 
when the maximum of G, in Fig. 9 of the com- 
panion paper [133], reached Go. Presumably, for 
cones formed at subcritical velocity no acoustic 
emission would be detected. Our preliminary 
investigations on this point seem to confirm this 
idea. 

8. Embri t t lement  and the 
Rehbinder ef fect  

Let us consider a SEN or a DCB specimen 
under a dead load P (unstable geometry) that 
gives a subcritical crack (G < Go) very slowly 
moving along the first positive branch as the 
crack length increase (Point I on Fig. 22). 
Put this specimen in a liquid that lowers the 
surface energy, has no corrosive effect (super- 
saturated in the components of the solid) and 

- - - T  . . . . . . . . . . . . . . . . .  ,d 

2y ~ !1 log v 

Figure 22 Schematic diagram of  embritt lement by lowering 
surface energy (Rehbinder effect). 
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Rehbinder effect, 

whose viscosity is such that it can follow the 
crack tip without drag up to the critical velocity 
vc. When the liquid reaches the crack tip, it 
lowers the surface energy of  the nascent surfaces 
by A~, and the representative Point J is on the 
shifted curve. If G is now higher than G" the 
crack speed jumps onto the second positive 
branch (after some incubation time), following 
the path JABB' .  A small reduction in surface 
energy by adsorption leads to catastrophic 
failure at a load which otherwise gave no 
apparent effect. This is the essence of the 
Rehbinder effect. This effect is not due to an 
increase in the driving force G - 27 by 2A 7, but 
to a drastic reduction to crack resistance on the 
RHS of  Equation 27, and ~b(v) must con- 
siderably increase to restore the balance. 

Let us take a numerical example with G = 
10Jm-2,70 = 0 .4Jm-2 ,7  = 0 -2 J m-2 and con- 
sider the curve a~b(v) = (G - 2 j /27  (Fig. 23) 
whose maximum at Vc is 20. For  70 = 0.4 the 
value a~b(v) is 11.5 and the propagation is sub- 
critical. For  ~ = 0.2 J m -2, its value is 24 and the 
propagation is catastrophic. If  7 reaches only 
0 .25Jm 2 the value is 19, and after some 
"incubation time" during which the crack 
advances (dG/~A is negative) until vc is reached, 
a catastrophic failure appears. (Such experi- 
ments of  delayed failure have been performed by 
Bryukhanova et al. [134] and Westwood and 
Kamdar  [135] with zinc embrittled by mercury, 
or cadmium by gallium). I f  the stress a at brittle 
rupture (G = Gc) is measured in various liquids, 
one will have from Equation 29 

a o  2 - a 2 A 7  
- ( 3 3 )  

o-2 7o 

where A? is the reduction of  surface energy given 
by the Gibbs equation, Equation 30. This fact 
has added still more confusion about the Griffith 
criterion, since the equation Gc = 27 seems to be 
confirmed by Equation 33. The confusion 
simply arises because 7r is proportional to 7- The 
ratio t/ = 7/70 thus appears as an embrittling 
efficiency [136]. 

So far, we have assumed a deep minimum in 
the curve, so that the crack speed can jump onto 
the second stable branch of  the virgin material, 
with no necessity for the embrittling medium to 
follow the crack at this velocity. Such a material 
can be said to be notch brittle ( b cc  metals and 
zinc). If on the contrary the minimum is shallow 
(Fig. 24), propagation is rapid so long as active 
medium can feed the crack, and the crack will 
stop if the supply of active medium is exhausted 
(as shown by Stoloff and Johnston [137]) for 

notch  insensitive metals ( f cc  and cadmium). 
Increasing the external pressure increases the 
limit velocity for cavitation according to 
Equation 32, and as a result the crack propa- 
gates more rapidly. This effect was observed by 

log v 

Figure 24 Assumed log G-log v curves for notch-insensitive 
materials. 
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Rhines et al. [138]. This delicate balance of fac- 
tors (crack tip feeding, viscosity, cavitation 
speed, position of the maximum and minimum 
of the q~(v) curve) which change with tem- 
perature, explains why prediction of embrittle- 
ment effects are impossible from purely chemical 
considerations, and so hazardous on uninves- 
tigated systems. 

These embrittling effects due to reduction of  
intrinsic surface energy by adsorption from 
gases or liquids, or by segregation of impurities 
at grain boundaries, are very general and have 
given rise to a vast literature. These effects were 
particularly studied by the Rehbinder school 
(Rehbinder, Likhtman, Shchukin and co- 
workers) since 1928 but, as quoted by Westwood 
[139], embrittlements of solid metals by liquid 
metals were first reported by Huntington [140] 
and Heyn [141] in 1914. A number of reviews 
have been published, either general [136, 139, 
142-147] or limited to liquid metal embrittle- 
ment [136, 148-155] or to embrittlement by 
grain-boundary segregation [l 56-160]. We will 
examine some examples. 

As reported by Rehbinder and Shchukin [142, 
143] Kontorovitch and co-workers have studied 
the fracture of porous samples of magnesium 
hydroxide (obtained by hydratation hardening 
of magnesium oxide) at various relative humidi- 
ties. The large specific surface (tens of m2g -1 
measured by the BET method) makes it possible 
to determine the adsorption F by a gravimetric 
method, and to compute the reduction A 7 of 
intrinsic surface energy by the Gibbs formula 
(Equation 30). Moreover, nuclear magnetic 
resonance experiments showed that water was 
present in the form of an adsorption layer, and 
not in the form of a liquid phase (hence no 
menisci and an absence of dissolution). They 
measured the stress a at fracture (connected with 
the rupture of bridge contact between particles) 
at various relative humidities and plotted 
( a o  2 - -  6 2 ) / 6 o  2 against A7 (Fig. 25). The result 
clearly verified Equation 33 and the slope gave 
the value 70 = 0.3Jm-2, so that embrittling 
efficiency was 7/ ~_ 0.3 at the higher vapour 
pressures. 

Skovrtsov et al. [161] measured the "surface 
energy" 7 of naphthalene single crystals by 
cleavage in various liquids at fixed cross-head 
velocity A = 4mmsec ~ and compared it to 
the fracture stress ~r of naphthalene polycrystals 
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Figure 25 Embrittlement of magnesium hydroxide: (a) 
Decrease of strength with water adsorption, (b) Comparison 
between observed reduction of strength and reduction of 
surface energy independently computed by the Gibbs 
equation (from [142]). 

in the same liquids. Plotting (7/70) I/2 against a/ao 

they claimed to have verified Equation 33. This 
raises criticisms: the two methods belong to 
fracture mechanics and the use of such ratios, 
eliminating numerical factors, will always give 
(7/70) 1/2= (a/ao) even if such an important 
effect as the storage of elastic energy in the 
uncleaved part of the crystal was neglected (as 
pointed out in [162]). More interesting is the 
variation of  strength of polycrystalline samples 
of naphthalene in aqueous solutions of alcohols 
of the saturated series as a function of  the con- 
centration as reported by Rehbinder and 
Shchukin [142, 143], and given in Fig. 26. The 
authors claimed to have verified Traube's rule 
for variation in surface activity in homologous 
series. Briefly, in an ideal dilute solution, the 
chemical potential of the solute varies with the 
concentration as 

# = #o + R T l n c  (34) 

so that the Gibbs equation 

dy = -- Fd# (35) 
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Figure 26 Relative decrease of the strength of  polycrystalline 
naphthalene samples in aqueous solutions of alcohols of the 
saturated series as a function of concentration (from [142]). 

gives 

d? F R T  
- ( 3 6 )  

dc c 

which for c ~ 0 is the surface activity [163]. 
Assuming a Langmuir-type adsorption 

c exp ( - A G / R T )  
F = FMa x 1 + c exp ( - A G / R T )  

as 
= FMa x - -  (37)  

1 + a c  

where AG is the free energy of  adsorption, Equa- 
tion 36 gives 

A 7 = - - R T F M a  x in (1 + ac) (38) 

so that, assuming FMa X = constant, equal values 
of ac give equal values of A?. The empirical 
Traube's law states that for each additional CH2 
group, the concentration required to give a 
certain surface energy to the dilute solution is 
reduced by a factor of  three (e.g. [163, 164]). If  
so, the concentration corresponding to a given 
lowering of  strength should decrease by a factor 
of  three between two succeeding homologues. 
Although this is not very evident in Fig. 26, this 
example is interesting for its analogy with 
embrittlement with grain boundary segregation. 

When a metal containing impurities is hea/ted, 
segregation occurs to the surface and to grain 
boundaries (GB) to reduce surface energy and 
GB energies, according to the Gibbs equation. 
The situation is similar to the adsorption of  
impurities at surface or interface in liquids, but 
the kinetics of segregation, governed by the 
McLean equation [165, 166] is much slower than 
in liquids. When equilibrium is reached the 

segregated atoms can form a monolayer or 
multilayers, and several adsorption isotherms 
can be proposed as for adsorption on to a sur- 
face [167]. For  example the McLean adsorption 
relation 

rb 
FbM.x -- Fb 1 --C 

exp (-- AGb/RT) 

(39) 

is similar to the Langmuir Equation 37, if the 
term c in the denominator is negligible. Surface 
energy can be measured by zero creep exper- 
iments, and GB energies deduced from the 
dihedral angle formed by thermal etching where 
the GB intersects the free surface [168]. From the 
variation of  surface and GB energies with the 
bulk impurity level, the segregations F s and F b 
can be deduced by the Gibbs equation. F s and F b 
can also be directly measured by Auger electron 
spectroscopy examination of  the surface or the 
GB after intergranular rupture in a vacuum 
[169]. 

Most of the studies have been done on steel, 
and on interaction between co-segregating 
species causing temper brittleness, and the 
results are very impressive [159]. Fewer papers 
have been published on the variation of stress to 
rupture with the variation of 7s and 7b- Fig. 27 
(from Hondros and McLean [170]) compares the 
variation of  ultimate tensile stress and GB 
energy with the bulk bismuth content in copper. 
Such intergranular rupture is quite similar to the 
adherence problem, and is related to the Dupr6 
energy of  adhesion as first proposed by Inman 
and Tipler [171]: 

w = 27~ - -  '~'b 

However, two difficulties arise with the thermo- 
dynamics of  w. Firstly, the Gibbs equation 
implies that both y, and ?b are reduced by 
segregation, but nothing is said about w. If ?b 
decreases more rapidly than 7,, w can eventually 
increase with segregation. Secondly, as pointed 
out by Inman and Tipler [171], the surface 
energy of  the newly formed crack surface can be 
different from the equilibrium surface energy 7,. 
Assuming a very dilute solution (ac ~ 1) so that 
Equations 37 and 38 give A 7 = - F R T ,  Seah 
[157, 158] wrote 

w = 27 ~  2F, R T -  7 o + FbRT 
o r  

w = w 0 - R T ( 2 F ~ -  Fb) (40) 
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Figure 27 Dependence of grain boundary energy and 
ultimate tensile strength of copper on bismuth content: 
�9 fast test; o slow test (from [170]). 

For slow fracture at high temperature Fs can be 
the equilibrium value, so that w generally 
decreases with segregation, but he pointed out 
that for fast fracture at low temperature, Fb is 
divided on the two surfaces to give a surface 

t l l - - .  segregation F~ r b, SO that Equation 40 
would give no variation in Dupr6 energy o f  
adhesion, even in embrittled system. This result 
was in complete disagreement with previous 
ideas on embrittling effects, and Seah [158] 
proposed that embrittlement is related to the 
excess size of the segregant atoms over those of 
the matrix. 

The problem with Equation 40 was solved by 
Hirth and Rice [172]. Fig. 28 displays the vari- 
ation of 27s and Yb with the chemical potential # 
of the impurity, assuming Langmuir-type segre- 
gation. The slopes of these curves give 2Fs and F b 
according to Equation 35. For a quasistatic 
crack propagation at a given #, the surface and 
GB segregations are represented by Points K 
and L, and surface and GB energies by Points A 
and B, and the Dupr6 work of adhesion by A B .  
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Figure 28 Variation of twice surface energy, grain boundary 
energy, and adsorption with chemical potential of the 
impurity, assuming Langmuir-type segregation. 

For a fast fracture, one has Fs = 1Fb (Point M) 
and assuming local thermodynamic equilibrium, 
the surface energy 27~ corresponds to Point B' as 
for a chemical potential /~', and the Dupr6 
energy of adhesion to A ' B "  = w ' .  Hirth and 
Rice [172] have shown that this new Dupr6 
energy of adhesion is 

w' = w0 - (p - #')Fb (41) 

Using Equation 37 for Fb (at concentration c) and 
Fs = 1Fb (at concentration c'), and assuming 
FbMax = F~Max' it becomes 

w' = w0+  F b R T ( ~ T - I n  2) (42) 

with 

U = A G s -  AGb = AHs - AHb 

- T ( A S ~  - ASh) 

(43) 

as given by Seah [173]. Similar treatment on 
Equation 40 gives 

w = w 0 + FbRT/1 - 
l_ 

(44) 

In both cases the Dupr6 energy of adhesion is 
linearly dependent on the level of segregation, 
and decreases with segregation if AG~ - AGb < 
R T l n  2, but less rapidly for fast fractures 
(Fig. 29). Seah [173] using a pair bonding 
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Figure 29 Reduction of  Dupr~ energy of  adhesion with 
U = AG, - AGu for fast and slow fracture. 

approach found Equation 42 directly (neglecting 
entropic terms in Equation 43), and showed that 
w o -  w" is proportional to the difference 
H~ ub" - H~ "b* in sublimation enthalpy of pure 
matrix and impurity per unit area, so that the 
remedial or embrittlement effect of segregant 
atoms can be predicted from standard texts of 
thermodynamic data. Fig. 30 (from Seah [173]) 
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shows these sublimation enthalpies as a function 
of atom size. Taking any element as the matrix, 
elements lower in the figure will, if segregated, 
cause embrittlement of the matrix GB, whereas 
elements highter will be remedial to such 
embrittlement. Roughly, small-radius atoms 
increase the GB cohesion, large-radius atoms 
decrease it. Such a map is also a good guide for 
adhesion and welding problems. The results 
reported here show how closely fracture mech- 
anics is related to chemistry. 

9. F r a c t u r e  s u r f a c e  e n e r g y  o f  
m e t a l s  

Ductile fracture and the ductile-brittle tran- 
sition are outside the scope of this paper, but the 
key to brittle-fracture mechanics is certainly the 
relationship between surface energy or Dupr6 
energy of adhesion and the dissipative processes. 
This fact has been pointed out repeatedly for 
thirty years. Let us return for a while to the early 
age of fracture mechanics, and follow the evolu- 
tion of ideas. 

eve  Nao 

0 . 3  
a(nm) 

Figure 30 Plot of  sublimation enthal- 
pies against atom size, giving a guide 
for the remedial/embrittlement effect 
of  segregated atoms (from [173]). 
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In his famous paper in 1920, Griffith [174] 
computed the increase of strain energy in a plate 
containing an elliptical crack of  length 2e and, 
introducing for the first time the surface energy 
of solids in mechanics, wrote that at equilibrium 
the total energy of the plate was an extremum: 

c3~(UE - 47c) = 0 

i e  
a --- (45) 

In this geometry, the extremum is a maximum 
and equilibrium is unstable. The condition 
of Equation 45 is thus a condition that the 
crack may extend, taking the energy for increas- 
ing the crack area from the elastic field. In 1945, 
Orowan [175] gave Griffith criterion by a very 
simple argument. Approximating the force law 
between atoms by a sine curve, he estimated the 
theoretical strength of  materials to be 

~_ ( E T ~  ~/2 (46) 
O'th k a---~ / 

where a0 is the interatomic distance. Comparing 
with the Inglis formula for maximum stress a~ at 
the end of  an elliptical crack of length 2c and 
radius of curvature ~, 

~c = 2a : (47) 

and assuming ~r c = 0"th and Q = a0 at a crack 
tip, he found thus the Griffith criterion from 
local conditions at the crack tip. The two ways 
to attack fracture mechanics, by an energy 
approach or by a stress intensity approach, 
where shown. In 1952, Irwin and Kies [176] 
introduced the strain energy release rate G, 
and in 1954 [177] the compliance methods to 
measure it. By a semi-inverse method, Wester- 
gaard [178] had shown in 1939 that the elastic 
solution for a crack gave an elliptic shape with 
stress singularities at the edge, and the leading 
terms of the stress tension near the edge of  a 
crack were given by Sneddon [179] in 1946. In 
1957 Irwin [180], introducing the stress intensity 
factor (later denoted K [181]) to describe the 
magnitude of  the stress singularities, showed 
that the strain energy release rate, which he also 
called crack extension force, was the work done 
by the singular stresses to close the elliptical 
crack, and thus placed the equivalence between 
energy and stress intensity approaches on a 
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higher level of  understanding. Modern fracture 
mechanics was born. 

The application of Griffith's criterion to fast 
fracture in metals was initially questioned. In 
1949, Orowan [182] wrote: "In ductile fracture, 
the work done against the cohesive forces is 
usually negligible compared with the work of 
plastic deformation that has to be done in order 
to extend the crack", and in a footnote "The 
plastic work p per unit area must be added to the 
surface energy ~ in Griffith's equation; in fact the 
order of magnitude of p (10 6 to 107ergcm 2) 
is higher than that of  surface energy 
(103 erg cm 2), so that the latter can be neglected 
and, instead of Griffith's equation, the condition 
a = (pE/c)  1/2 used". Similarly, Irwin [183] sug- 
gested that the Griffith theory could be made 
generally applicable by substitution of energy 
spent in localized plastic strain for surface 
energy as a measure of resistance to crack exten- 
sion, and the modified Griffith formula 

a ~- (48) 

became known as Irwin-Orowan formula. Irwin 
[181] introduced the critical value Go, noting that 
"Since the change from slow to fast fracturing of 
a developing crack is usually abrupt, fracture 
strength may be described as the critical value Gc 
of the crack extension force, G, necessary for 
onset of rapid crack extension". Later much 
confusion arose with Gr some authors using it 
for the Griffith criterion Gr = 2y others as 
G~ = 27f for onset of rapid propagation, others 
for any detectable crack velocity in the sub- 
critical range. Even Strawley and Brown [184] 
wrote "In some of the literature on fracture 
mechanics, Gc is defined in different terms, for 
instance, as the value of the crack extension 
force at onset of rapid crack propagation. Such 
a definition is too vague as an operational defi- 
nition for testing purposes, and may be even 
misleading in seeming to imply that continuing 
slow crack extension is to be expected at con- 
stant levels of G less than Go. Such behaviour 
fortunately is unusual", and they proposed to 
define it from the maximum recorded load and 
the corresponding crack length in an experiment 
at fixed cross-head velocity. This fourth defini- 
tion is the analogue of tack force in adherence, 
and as discussed above has no simple physical 
significance. 
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Figure 31 Crack extension behaviour as a function of  strain energy release rate (from [185]). "The solid curve and the 
dash-dot curve show the fast-stable and slow-stable regimes in term of  log (crack speed) as a function of  log G. The vertical 
line segment forming the lower left portion of  the solid curve represents the tendency of crack arrest, in rate-sensitive 
materials, to occur abruptly from a certain minimum velocity. This vertical portion should be thought of  as a stretched-out 
end-point of the fast stable regime. Crack extension is stable only where the slope of line is positive and finite. In terms of 
a loading-speed scale at the right of  the graph, log(l/ t) ,  the dashed line represents the tendency of  G~c, for onset of  rapid 
fracture, to decrease with increase of  strain rate". [185]. Clearly, the vertical solid line is similar to the line CD of Fig. 13, 
and the dashed line is similar to the variation of  Kit i with cross-head velocity in Fig. 17. 

On the other hand Irwin and Paris [185] wrote 
in 1971: "In terms of  the old modified Griffith 
theory (Irwin Orowan), the condition critical for 
the onset of  rapid fracture was a point of  stable 
balance, between stress field energy release rate 
and rate of plastic work, to be followed by a 
regime of unstable rapid propagation. However, 
study of the implications from Well's thermal 
measurements suggested, quite oppositely, that 
the point of rapid fracture was an abrupt 
instability point followed by a stable regime in 
which work rate and loss of stress field energy 
were balanced through a considerable range of  
crack speeds. Indeed, the instability point could 
be preceded by a slow regime of crack extension 
in which the crack extension process was also 
stable." They gave a schematic diagram 
(Fig. 31) quite similar to Fig. 13. The model 
proposed here is thus very general. 

It is evident that the question of the relation- 
ship between surface energy or Dupr6 energy of 
adhesion and the magnitude of  dissipative 
processes should have been raised by researchers 
working on segregation or liquid embrittlement, 
who were familiar with the Gibbs equation. 
Indeed, the question was raised by McLean [165] 
who wrote in 1957: " I f  the energy of  the surface 

along which fracture is to spread is small, the 
tensile stress concentration required at the tip of 
the crack to start or continue fracture is also 
small. The associated shear stress concentration, 
which produces the plastic deformation is 
therefore also small and little plastic work is 
done. Hence the plastic deformation work done 
is governed by the energy of the fracture sur- 
face." The same argument has been presented 
repeatedly, and was used by Andrews and 
Kinloch [18] for viscoelastic losses. In 1963, 
Stoloff and Johnston [137] suggested following 
the Orowan [175] derivation of the Griffith 
criterion from Equations 46 and 47, still assum- 
ing ac = Oth at the crack tip, but with Q -~ a0 to 
take into account the alteration of  shape due to 
plastic deformation (crack blunting). They thus 
obtained 

_~ --  (49) 
ao / 

and proposed to identify 7Q/ao with the yp of the 
Irwin Orowan formula (Equation 48), so that 
plastic deformation does not provide an energy 
term added to y but a dimensionless ratio which 
multiplies 7- They were followed by Westwood 
and Kamdar [135]. By a dimensional analysis, Rice 
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[186] showed in 1965 that "at fracture the energy 
release rate is directly proportional to the sur- 
face energy term as multiplied by some function 
fdepending on material constants describing the 
elastic-plastic behax;iour". Assuming simul- 
taneous bond breaking and dislocation emission 
at the crack tip, McMahon and Vitek [187] 
proposed that ~p varies as ~" with n ~- 7, and 
later [188] with n between 1 and 2. In this last 
case, n is related to the power law dislocation 
velocity 

where ~ is the local stress and ~ the shear 
modulus. The problem with metals is to find a 
microscopic mechanism leading to a negative 
resistance branch at high stresses or high strain 
rates. 

10. Conclusion 
In this paper, we have attempted to extend and 
generalize our ten years' experience on 
adherence of solids to some general problems of 
fracture mechanics. The theory of adherence of 
punches on elastic solids is firmly established 
from the three points of view of mechanics of 
contact, fracture mechanics and general theory 
of elasticity. Equilibrium cracks, crack healing 
and the kinetics of crack propagation have been 
studied for various glass-elastomer contacts, 
and the general equation 

G -  w = wq~r(v) 

was found to explain all the results and to give 
precise predictions, c~r(v ) is related to visco- 
elastic losses at the crack tip. As viscoelastic 
losses generally decrease at high frequency, it 
was assumed that the function ~b(v) can decrease 
at higher crack velocities. However, a 4fly) 
branch with a negative slope cannot be 
observed, for it corresponds to resistance 
decreasing as the crack velocity increases, and 
velocity jump or stick-slip must be observed 
depending on the geometry tested. It was felt 
that the value of G (or K) at which the velocity 
jump occurs was the G~ (or Kc) of fracture mech- 
anics, so that crack propagation below Gc (sub- 
critical crack growth) is a normal propagation 
according to the Griffith criterion, and needs no 
stress corrosion to explain it. Moreover the 
multiplicative factor w gives a shift of the v - K  

3 0 6 6 ,  

curves with environment, which could explain 
embrittlement by reduction of Gc when the sur- 
rounding medium can still reach the crack tip at 
the velocity corresponding to velocity jump. 

With these ideas in mind, the literature con- 
cerning fracture of glasses, ceramics and brittle 
polymers was reviewed together with that for 
stick-slip, the Rehbinder effect and embrittle- 
ment by segregation. When the pieces of that 
puzzle are assembled, a very simple picture of 
fracture mechanics emerges, with stable slow 
crack propagaton for 27 < G < Gc and stable 
fast propagation for G > Gr It is pointed out 
that the definition of Gr by the maximum 
recorded force in an experiment at constant 
cross-head velocity is not correct, since the maxi- 
mum can be reached at subcritical velocity. 
Occurrence of velocity jump or stick-slip depends 
on the geometry tested and the stiffness of the 
apparatus, as expected. The shift of v - K  curves 
with adsorption seems in agreement with the 
predicted reduction in surface energy, and the 
ratio of surface energies in various environments 
can be deduced from the ratio of strain energy 
release rates taken at the same crack velocity. 
When the surrounding medium can reach the 
crack tip and reduce the surface energy of the 
nascent surfaces, even at the critical velocity 
where the velocity jumps, the critical strain 
energy release rate G~ is reduced in the same 
proportion as 7, and a loading which would have 
given a subcritical crack growth will give a cata- 
strophic failure, Incubation time, which was a 
stumbling block for the explanation of the 
Rehbinder effect by reduction of surface energy, 
appears here naturally. Embrittlement by segre- 
gation is very similar to the Rehbinder effect, 
except for the viscous effect and for the fact that 
Duprr's energy of adsorption can decrease or 
increase by adsorption, whereas surface energy 
always decreases. 

Most of the ideas proposed here are not new 
and have been given here and there in the litera- 
ture (e.g. static fatigue limit corresponding to 
intrinsic surface energy, fracture toughness 
related to the transition from slow to fast 
propagation, stick-slip due to a negative- 
resistance branch, losses at crack tip propor- 
tional to surface energy) but when put together 
they lead to a single model that accounts for a 
number of phenomena not hitherto related to 
each other. The central points of that theory 



are (a) the proportionality between surface 
energy or Dupr6 energy of  adhesion and losses 
at the crack tip, and (b) the existence of  a 
branch q~(v) with a negative slope between two 
branches with positive slopes. There are good 
experimental clues but no firm theory. We have 
tried to follow the evolution of  idea concerning 
the relation between 7 and 70 in the Irwin- 
Orowan formula; this question is still an ever- 
green topic. For  viscoelastics we can hope that 
the function ~b(v), with its negative branch, will 
be in the future directly derived from the vari- 
tion of  E '  and E" with frequency. For  metals the 
existence of  a negative-resistance branch is more 
puzzling, and the ductile-brit t le transition is not 
yet clear. 

If a few recommendations for future work can 
be made, the following are proposed: (a) study 
the whole v - K  curve, since Kc (or Go) is only one 
point on that curve; (b) be careful with exper- 
iments at fixed cross-head velocity, because the 
recorded force can be difficult to interpret; (c) 
studies of  viscous drag and the variation of  cavi- 
tation with external pressure would be of  inter- 
est; (d) a study of  the embrittlement effect should 
involve study of  subcritical crack growth to see 
if the whole v -Kcurve  is shifted; (e) compare the 
variation ofy  with the variation of G at the same 
crack velocity. 

We have noted that experiments on embrittle- 
ment, although of  high standard in physical 
chemistry, are not of  the same standard as frac- 
ture mechanics experiments on glasses: too 
many workers still use mean stress at rupture, 
instead of  G or K which allow comparison 
between various geometries. 
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Appendix: Velocity jump and stick-slip 
in DCB tests 
In its simpler form (neglecting shear stresses and 
rotation of  section at the crack tip) the relation 
between load and displacement (Fig. A1) is 

~ 2 - -  

and hence the stiffness is 

4 P L  3 

Ebh3 (A 1) 

E b h  3 

- 8L 3 (A2) 

L 

. . . . .  [^ t 

Figure AI DCB specimen - k m represent the stiffness of the 
testing apparatus. 

After evaluation of  elastic energy, the strain 
energy release rate is 

12P2L  2 3Eh  3 b 2 

G - Eb2h 3 - 16L 4 (A3a) 

or using Equations 18 and A 1 

3 E h  3 N 

G = 16L4 ( E b h  3 ~2 (A3b) 

1 + 8kmL3, ] 

Equations A1 and A3a are the equations of  state 
(Equations 2b and c) of the system. The Maxwell 
relations (Equations 6 and 7) give 

= SA - 8L 4 - b L  

(A4) 

<) 
(A5) 

where dA = - b d L ,  and Equation 8 is verified. 
Equilibrium is unstable at fixed load, and 

stable at fixed grips since 

( c~G)p 24p2L 
- Eb3h 3 < 0 (A6) 

( c~G)~ 3Eh3 62 

- 4bL5 > 0 (A7) 

The condition for stability at fixed cross-head 
displacement A, derived from Equation 17 or 
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directly from Equation A3b, is 

(~A)A -3Eh362 
4bL 5 

[ 1 , t{3Ebh3"~ 1Ebh~ ] • - -  > 0  

xl6Z~/k~ + 8L3_1 
(A8) 

so that the condition for stable equilibrium is 

Ebh 3 
km> 16L----g (A9) 

Letting L0 be the initial crack length, A 0 the 
equilibrium cross-head displacement, and 
ko = Ebh3/8L 3, Equation A3b becomes 

a (A)2 (L.~)4 [ 1--1-(ko/km) _~ 
2--~ = ~ x 1 + (ko/km)(L3/L3)J 

and is given in Fig. A2 for k m = 0.1, 1 and 10 
k0, and for various imposed cross-head displace- 
ments. In the first case equilibrium under A 0 is 
unstable, and the crack first accelerates and then 
slows down with an inflexion point in between. 
For various imposed values of A, the inflexion 
point occurs at the same crack length L corre- 
sponding to equality in Equation A9. The situ- 
ation is quite similar to what is observed with the 
adherence of a sphere [2, 3] or the Hertzian 
fracture [133]. 

However, at fixed cross-head velocity A the 
problem is more complicated, for the crack is 
never in equilibrium. Differentiating Equation 
18, the relation between 6 and A during crack 
propagation is 

1 + 1 0P 

(A10) 

which correctly gives ~ = A for kr~ = oo and 
= (~6/OA)e,d for k m = 0 (using Equation 8). 

When the machine is stopped (load relaxation 
technique), Equation A10 together with 

gives 

( ~ )  [ I--(OP~ l a P  
A = OA a 1 + kmka6/Aj at 

(A1 l) 

40. 

30 

20' 

10. 

/ - - \  
! \ 

! \ 
/ 
i 
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\ 
\ 
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. . . . . . . . . . .  k m =1Ok  O 
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!i/ \, \ 

\ "\ \ ,\ 
\ , \  "\, , \  

i 

L/L o 

Figure A2 Reduced strain energy release rate against 
reduced crack length, at various imposed cross-head 
displacements, for DCB tested with apparatus of  various 
stiffnesses. 

i.e. for a DCB test 

L [ Ebh 3 ] dP 
v - 3P 1 + 8 k m L 3 j  ~ (A12) 

On the other hand, if the load is continuously 
recorded at A = constant, one has 

dP OP . dP . 

= ~ A A - (a13) \~AJp _] 

i.e. for DCB 

dP 
dt 

Ebh 3 ( Ebh 3 ~ l 

36 v) (A14) • ( A -  Z- 

When v is small P increases, and when v 
becomes high P decreases. The maximum of P 
thus occurs at a velocity v depending on the 
geometry of the specimen and on A, and does 
not generally correspond to v0 and Go. At this 
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/ o = 5  10-2m 
km=10 ko 

~ ' -  103 ~ = 1 J m -2 
V 0 17 1 8O0 

102 Gc= 930J m - 2  

1) 

3 0  15 

i ~ 10 

10 -I 

5 

0 i * I 

0 10 2;  ' 3J0 40 
a/z~ 0 

Figure A3 Computed curves of recorded load against cross- 
head displacement at various cross-head velocities, for a 
DCB specimen of PM M A. At low cross-head velocities G c is 
never reached, and Pm,x corresponds to subcritical crack 
growth. 

stage the velocity v is not known. It depends on 
G (Equation 27) which varies with time accord- 
ing to 

dG (OG~ A (A15) 
dt - \-~-AL + \OAJA 

with (OG/OA)A given by Equation A8 and 

(A16) 

For DCB the curve P(t) can be numerically 
computed, using Equations, AI4,  A3b and 27. 

Fig. A3 is for a DCB specimen (L0 = 5 x 
1 0 - 2 m ,  k m = l0 k0) of  P M M A  (E = 2.9 x 
1 0 9 p a )  and taking 7 = 1 J m  2, Gc = 9 3 0 J m  2 

G 
1 = 800 V 0"17 

2~ 

which closely fits the experimental results of  
Marshall et al. [90] on subcritical crack growth 
at 20 ~ C. The curves are stopped as soon as G 
reaches Go. It clearly appears that Pmax corres- 
ponds to subcritical crack growth at low A (note 
that decreasing Gc decreases the z~ at which 
velocity jump occurs). I f  the critical strain 
energy release rate is computed with Equation 
A3a (with km = oQ) from the value of the crack 
length at/'max, the result can be in error for low 
A and low km, as shown in Fig. A4. 

N o t e  a d d e d  i n  p r o o f  
A recent paper on the Por tev in -Le  Chatelier 
effect (L. P. Kubin, Y. Estrin, Acta Metall. 3 
(! 985) 397) comes to the attention of the author. 
This effect occurring when dislocations are torn 
off from their solute atmosphere, and giving a 
negative strain rate sensitivity, could provide a 
microscopic mechanism for negative resistance 
to crack motion in metals. The authors give the 
stress as 

a = h~ + F(~) 

where h is the work hardening rate, ~ the strain, 
and F(~) a function of  the strain rate with a 
negative branch between two positive ones, and 
they describe jumps in strain rate and st ick-sl ip 
motions, in loadings at constant stress rate. 

500 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

400 

300 

260 

1~o / 

~ . . . .  go . . . .  lOO . . . .  1~o . . . .  2oo 
AI~o (see-') 

Figure A4 Apparent  critical strain 
energy release rate, computed from 
Pmax, with the crack length at Pmax, (and 
neglecting kin), as a function of the 
cross-head velocity, for apparatus  of  
various stiffnesses. The open circle is 
for cross-head velocity above which 
/'max corresponds to G = G c. 
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